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3. IMPACT/APPLICATIONS 

For performance evaluation and tuning, we used the real IR background data obtained from SPAWAR 
Systems Center, San Diego, CA (staring shipboard IRST). It turns out that the developed algorithms 

are able to detect very low SNR targets - down to -9dB (see [22, 31, 36] for more details). It is 

expected that the developed algorithms will be successfully used in EO/IRST systems in 6.2 programs 

for the detection and tracking of low-SNR targets. In particular, currently the developed algorithms 

are being evaluated for surveillance applications by Raytheon, El Segundo, CA and SPAWAR Systems 

Center, San Diego, CA (see Section 4). 



4. TECHNOLOGY TRANSFER 

The Adaptive Spatial-Temporal Method for Clutter Rejection and Scene Stabilization and Switching 

Multiple Model Based TBD Algorithms were transferred to the SPAWAR Systems Center, San Diego, 

CA (POC: Dr. John Barnett) and Raytheon, El Segundo, CA (EO Signal Processing IPT, POC: Dr. 

Paul Singer). The algorithms are being inserted into existing testbeds and evaluated for surveillance 

applications such as cruise missile defense. 

5.  SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS 

During the reporting period the following work was completed: 

(1) Development of a spectral approach to nonlinear filtering based on Wiener Chaos expansions 

(2) Development of the theory and applications of inverse problems for stochastic PDE's. 
(3) Development of novel methodology for clutter rejection and electronic scene stabilization. 

(4) Development of the adaptive spatial-temporal algorithms for clutter rejection and electronic 
scene stabilization based on different time-splitting approximation schemes that use different 

spatial bases (Fourier, wavelets, etc.). 
(5) Performance evaluation of these algorithms and their comparison with the best spatial-only 

techniques. 
(6) Development of optimal banks of interacting Bayesian matched filters for TBD. 
(7) Development and implementation of different fast numerical approximations of this algorithm, 

including fast Gaussian-mixture approximations. 
(8) Performance evaluation of BIBMF and its comparison with the IMM approach, banks of 3D 

matched filters, and Viterbi-type algorithms. 

(9) Development of sequential multihypothesis tests with data fusion in multi-sensor distributed 

systems. 
(10) Performance evaluation of fusion local sequential decisions in distributed systems. 

5.1. Wiener Chaos Eexpansion as a Numerical Aalgorithm. We derived and investigated 

deterministic equations for the Hermite-Fourier coefficients of the Wiener chaos expansion of a solution 
to Duncan-Mortensen-Zakai equation of nonlinear filtering. These result was used for development 

of numerical spectral separation schemes for solving those equations. We demonstrated that spectral 

separating scheme complemented by the domain pursuit method provides quite satisfactory results in 

higher dimensions (d = 4 — 6). 

5.2. Nonlinear Ffiltering for Doubly Stochastic Models with Jumps. We studied detection 

and tracking of maneuvering low intensity (dim) targets in image sequences (e.g. infrared imaging). 

Traditionally, the uncertainty in the trajectory of a maneuvering non-cooperative target is modelled 

by an additive state noise. This type of modelling is clearly insufficient for agile acutely maneuvering 

targets. Thus, to account for sharp maneuvers, we allowed doubly stochastic models for the state 

process. More specifically, we studied state models given by a linear Ito diffusion process Xt with 

coefficients depending on a Markov jump process Of The latter process models transitions between the 

base states (possible maneuvers). Models of this type are often referred to in the literature as switching 



multiple models, Markov modulated models or affine models. Their main advantages are in flexibility 

and computational simplicity. The latter stems from the linearity of the state process for fixed value of 

the switching process 9t. 

5.3. Banks of Interacting Bayesian Matched Filters. The proliferation of imaging sensors 

(such as IR, SAR, HRRR, etc.) has been an important trend in the development of military tracking 
and detection systems for over a decade. This trend put forth a number of new challenging problems 

in signal processing. 

The most accepted approach to tracking based on imaging data is the 3D matched filter proposed by 

Reed et al. [30]. This technique is known to produce excellent results provided the target is moving 

at a known speed in a designated direction. This limitation could be offset, at least partially, by the 

use of a bank of assumed velocity filters. Still, applications of 3D matched filtering are limited to 
a somewhat narrow set of patterns of target dynamics. In particular, the 3D match filter is poorly 

equipped for handling target kinematics with rapid switches between multiple models. It does not have 
a built-in mechanism for incorporating statistically formalized prior knowledge about the target into 

data association. 

In [23, 24, 31] we demonstrated that the 3D matched filter can be cast into a general framework of 

optimal spatial-temporal Bayesian filtering. This allows us to extend the matched filtering algorithm to 
a wide class of models of target dynamics, including switching multiple models (SMM). In the reporting 

period, this idea has been implemented for the development of Banks of Interacting Bayesian Matched 
Filters (BIBMF). 

BIBMF turns out to be a theoretically optimal algorithm even for nonlinear models for observations 

which are typical for TBD in imaging sensors. For nonlinear models considered in the research a 
standard IMM algorithm proposed by Blom and Bar Shalom [7, 10] cannot be applied at all. We, 

however, showed that our method is more efficient even in a linear case where IMM proved to work well. 
In addition, we compared the developed structure with two other algorithms: banks of 3D matched 
filters and the Viterbi type batch algorithm. The latter one is also our proprietary algorithm that was 
probably developed for these applications for the first time.- 

BIBMF along with the other above mentioned algorithms were tested on an important and difficult 

problem of tracking-before-detection of maneuvering targets. Real IR background data (courtesy of 

SPAWAR Systems Center, San Diego,CA) were used in this test. Robust and accurate performance was 
demonstrated for very low SNR targets (up to —6.6 dB). The results revealed that BIBMF substantially 

outperformed all other algorithms. 

Below, we present the test results of the developed BIBMF algorithm for tracking-before-detection of 

agile targets in IR cluttered 2D images. The results show that the BIBMF algorithm is able to handle 
acutely maneuvering targets with very low SNR. 

For the simulation study, a maneuvering target of the size 3x3 pixels was artificially superimposed on 

the imagery. The impulse function h(x) is constant (with amplitude 5 ) over the target image (3x3 

pixels) and zero elsewhere on the sensor array. The residual background (residual clutter plus sensor 

noise), V£, is modeled as a space-time white Gaussian noise, V£ ~ A/"(0,<Jo). Two sets of experiments 



were conducted with the residual (after preprocessing) single-pixel SNR fixed at 0 dB and -3 dB levels. 

SNR is defined by SNR = 201og10(5/a-0). where a0 is the standard deviation of the residual background 

noise. 

In every experiment, the initial position of the target was uniformly distributed and chosen randomly. 

The initial state of the switching process was also uniformly distributed among 9 possible models of. 

kinematics. The basic state models are shown in Figure 1. Five of them represent constant speed 

linear motion in assumed direction, and another four represent constant rate 90° turns. The switching 

probabilities between different basic states were chosen as follows. If the target performs a linear motion, 
then the probability that it preserves the same direction (about 0.8) is larger then the probabilities of 

switching to different modes. In contrast, if the target is currently performing a turn maneuver, we 
assign a dominating probability (about 0.9) to switching to the linear motion which is tangential to the 

target curve. The rest of probability is distributed uniformly among those turn maneuvers which the 

target is capable of making after completing the current one (see Figure 1). The model described above 

incorporates quite complicated trajectories and allows for frequent maneuvering. 

■ 
■ 

.■ 
i^i 

■ i-1 

1 2 3 4 5 6 7 8 9 

1 0.8 0.15 0 0 0 0.05 0 0 0 

2 0.1 0.8 0.1 0 0 0 0 0 0 

3 0 0.1 0.7 0.1 0 0 0.05 0.05 0 

4 0 0 0.1 0.8 0.1 0 0 0 0 

5 0 0 0 0.15 0.8 0 0 0 0.05 

6 0 0 0.9 0 0 0 0.05 0.05 0 

7 0.9 0 0 0 0 0.1 0 0 0 

8 0 0 0 0 0.9 0 0 0 0.1 

9 0 0 0.9 0 0 0 0.05 0.05 0 

FIGURE 1. Possible target movements (left) and transition probabilities be- 
tween multiple models (right) 

FIGURE 2. Actual trajectory (solid line) and maximum posterior density es- 
timates (squares), x coordinate versus time (left), y coordinate versus time 
(right), SNR= -3dB 

Figure 2 shows the results of tracking with the use of the maximum posterior estimator for quite low 

SNR. It is seen that the true trajectory was estimated very accurately. 

An important parameter of a TBD algorithm is the number of frames necessary for an "accurate" 

estimation of target location. The average delays in target detection after its first appearance and after 

a turn maneuver were estimated by using the Monte Carlo experiment. The results of this experiment 

are as follows. 



• SNR=0 dB: after the first appearance—0.9 frames, after a turn maneuver—0.2 frames 

• SNR= -3 dB: after the first appearance—5.0 frames, after a turn maneuver—1.7 frames 

5.4. Adaptive Spatial-Temporal Method for Clutter Rejection and Electronic Scene 
Stabilization. We start with the discussion of the performance indices. Let Sn{rij) and Sn(rij) be 
the original signal from the target and the signal after clutter rejection, respectively. Here r{j = (xi,yj) 

is the pixel with coordinates (xi,yj) on the plane. Introduce the following indices: 

iFrom the point of view of correct signal recostruction/preservation, a good algorithm should provide 

both h and J2 close to 1. If this is the case, then a good algorithm, from the point of view of clutter 

rejection, should maximize the value of 
2 

(1) G = 101og-^- 
CTout 

where afn is the variance of the input frame Yn and c^ut is the variance of the output frame Yn. Indeed, 
if the signal is preserved, then the maximization of G is equivalent to the maximization of the relative 

Signal-to-Noise-Plus-Clutter Ratio 
SNCRin 10 log ; 
SNCR0Ut 

where 

SNCRl„ = J?4M, SNCRoul = .?4M. 
at V        Oout 

Thus, we will use the index G defined in (1) as the measure of the quality of the clutter rejection: the 

bigger G, the better the algorithm. 

In simulations we used a subset H of the Haar wavelet basis to approximate the clutter function bn(r) 

in the sequence of frames Yn(r) = bn{r) + £n{r), where £n(r) is sensor noise. 

In the observations Yk, k = 1,2,..., n, the two-dimensional parallel jitter {ök = (öx>k, Sy!k)} was mod- 
eled by pairs of independent random variables uniformly distributed over the set {0, ±1,..., ±<5max}. 
The observations Yi,...,Yn were generated by applying n independent replicas of the jitter to the 
coordinates of the function b, and then, subsequently adding white Gaussian noise (with mean 0 and 

variance a2) to each component of a discretized version of the function b(r + ok)- 

Figure 3 illustrates the performance of the developed rejection filter for a particular case. In Figure 3, the 

picture on the left-hand side shows a typical input (cluttered and noisy) frame with the noise variance 
a2 = 10, clutter dynamic range (CDR) 10 - 100, and jitter <5 £ [-2, +2] pixels. The picture on the 

right side shows the result of clutter rejection (the residuals at the output of the filter) with temporal 
window size T = 20 frames. It can be seen that clutter is completely removed and the residuals look 

like noise. For comparison, Figure 4 illustrates the result of spatial-only (in-frame) processing based on 

the nonparametric method developed in CAMS previously [25]. This spatial clutter rejection technique 

is based on nonparametric regression algorithms, namely, on kernel smoothing methods. This technique 

proved to be highly efficient for a variety of 'difficult' cluttered scenes, in particular for the IR LAPTEX 

field test data (see [25] for more details).   In Figure 4, the picture on the left-hand side depicts the 



estimate of clutter, while the picture on the right-hand side shows the residuals at the output of the 

spatial filter. One can see that clutter is removed only partially. The pieces of residual clutter can be 
seen even by the naked eye. The advantage of the developed temporal-spatial filter over the spatial 

filter is obvious when comparing the right-hand side pictures in Figure 3 and Figure 4. 

The data in Table 1 summarize the performance of the rejection filter in terms of the gain G defined in 

(1), and also, in terms of other important characteristics: the dynamic range (maximum and minimum 

values ia.axijYn{rij) and minjj Yn(rij)), mean value Yn = (N±N2)~
l J2i,jYn(?ij), and variance aY — 

(iViiV^)-1 X^i j\Yn(rij) — Yn)2. For the spatial-temporal filter, the residuals have zero mean value, the 
dynamic range is much less than in the input frame, and the variance is close to the variance of the noise 

(^(jy — 10.84 versus a1 — 10). These numbers show that clutter is suppressed down below the noise level. 
This allows us to arrive at the conclusion that the developed algorithm is highly efficient: it completely 

removes high-intensive clutter in the presence of substantially large jitter. Also, the data in Table 1 

allow us to compare the nonparametric spatial filter with the developed spatial-temporal filter at the 

qualitative level. It can be seen that the dynamic range of the output frame of the spatial-temporal 

filter is 3 times smaller than that of the output frame of the spatial filter. The variance of the output 
frame of the spatial-temporal filter is over 10 times (10.3 dB) smaller than that of the output frame of 

the spatial filter. 

15 20 25 30 10 15 20 25 

FIGURE 3. Clutter Rejection:   Spatial-Temporal Filter with the Haar Basis 
(a2 = 10, 6 = ±2, CDR = 10 - 100, T = 20) 
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10 15 20 25 30 

FIGURE 4. Clutter Rejection:  Spatial Nonparametric Filter (a2 = 10, CDR = 
10 - 100) 

TABLE 1. Performance of Clutter Rejection Algorithms (a2 = 10, 6 = ±2) 

Minimum Maximum Mean Variance Gain 

Input 3.04 105.25 56.10 482.86 
Output (spatial-temporal), T — 20 -10.24 9.44 -0.011 10.84 16.5 (dB) 

Output (spatial) -36.34 34.60 -0.004 114.99 6.2 (dB) 

Discussion of the results. The development of efficient IR clutter rejection algorithms is of critical 

importance for modern IRST systems. LOS stabilization jitter, which results in translational, rotational, 
and parallax distortions in registered images, does not allow for efficient temporal filtering of frames 
and clutter rejection. This is probably one of the major reasons why current IR scanning and staring 
array sensors employ primarily spatial, rather than spatial-temporal, processing to accomplish clutter 

rejection. 

We proposed a novel approach to spatial-temporal clutter rejection and scene stabilization. This ap- 

proach includes a jitter estimation and compensation algorithm as a non-separable part. The proposed 

clutter rejection method does not use any assumptions on statistical models of clutter, which are usually 

unreliable and lead to non-robust algorithms. All we need for efficient temporal processing is the con- 

dition that clutter does not change substantially on a certain time interval. As a result, the developed 

rejection filter is highly robust and can handle any spatial variations of clutter. 

Based on the results of simulations, we can conclude that the developed algorithm is highly efficient: it 

completely removes high-intensive clutter in the presence of substantial jitter. Also, the spatial-temporal 

filter gives a tremendous gain compared to the best existing spatial techniques. 
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5.5. Sequential Testing of Multiple Hypotheses in Multi-Sensor Distributed Systems. 
Most of the research in fusion of data from multiple sensors was done in a non-sequential setting (see 
[4, 11, 13, 16] and many others) where the differences among sensor decision times, and their differences 

from the fusion time are ignored. In many practical systems, however, sensor decisions are made in a 

sequential manner at random times, depending on the data that are received sequentially by the sensors. 
In some other cases, different sensor decisions are made at different, albeit fixed, times when the sensors 
utilize decision rules with fixed (but different) sample sizes. It is, therefore, important to consider sensor 

decisions and their fusion in a sequential setting where either the fusion rule or the sensor rules are 
sequential in nature. 

In this research, we study the problem of fusing local decisions made sequentially by multiple sensors. 

We consider a sequential version of the distributed decision problem that has predetermined sensor 

decision rules. It is assumed that each sensor sequentially tests M hypotheses, and then, the M-ary 

local decisions are transmitted to a fusion sensor, one-by-one, in the order they are made. A fusion 

center combines these local decisions to further test hypotheses either sequentially or non-sequentially. 
As a result, the performance is enhanced. We do not assume that observations are i.i.d. In contrast, 

it is assumed that the observations can be highly correlated and non-stationary, which is important 
for many applications. The proposed M-ary sequential test turns out to be asymptotically optimal for 
very general statistical models when the probabilities of errors are small. In general, we do not also 
assume that the local decisions that are transmitted to the fusion center are independent. However, in 
this general case, it is difficult to design final fusion rules to meet constraints on the error probabilities 
and/or to compute performance. This design is performed in the case where the local decisions are 

independent (not necessarily identically distributed). 

Performance analysis shows that the final decision (after fusion of local decisions) can be made substan- 

tially more reliable even for a small number of sensors (3-5). 
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